
March 1990 "- ="- UILU-ENG-90-2207

CSG-121

COORDINATED SCIENCE LABORATORY
College of Engineering

/q rn_:S

//I_ _o -dee..

2 _///3

MEASURE-. AN
INTEGRATED
DATA-ANALYSIS
AND MODEL
IDENTIFICATION
FACILITY

Jaidip Singh
Ravi K. Iyer

(B'ACA-C_-!of_4s2) MFASURE: AN IB'Tr=G_,ATEO

,)AIA-ANaLY=,I3 AND M_D_L [JtN IF!CATION

FACTLTTY (Tllinois Univ.) 45 p CSCI
09B

N90-20o_6

UnclJs

03/00 0271i13

UNIVERSITY OF ILLINOIS AT UR/3ANA-CHAMPAIGN

Appr0¢,ed for Public ReTeasC Disiribufion Uni[mited.

L

1" "

lit

=

iii

z
_ ill

J

ii

J

w

J

:7 J

J

W

W

w

MEASURE: AN INTEGRATED DATA-ANALYSIS

AND MODEL-IDENTIFICATION FACILITY

L

Jaidip Singh Ravi K. Iyer

January 1990

w

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Urbana, IL61801

I

I

g

w_

m
m

m

II

_m_m

g

J

J

m

I!

mm i_

I i

U _

ii

ABSTRACT

This report describes the first phase of the development of MEASURE, an integrated

data analysis and model identification facility. The facility takes system activity data as

input and produces as output representative behavioral models of the system in near

real-time. In addition a wide range of statistical characteristics of the measured system

are also available.The usage of the system is illustrated on data collected via software

instrumentation of a network of SUN workstations at the University of Illinois. Initially,

statistical clustering is used to identify high-density regions of resource-usage in a given

environment. The identified regions form the states for building a state-transition model

to evaluate system and program performance in real-time. The model is then solved to

obtain useful parameters such as the response-time distribution and the mean waiting

time in each state. A graphical interface which displays the identified models and their

characteristics (with real-time updates) has also been developed. The results provide an

understanding of the resource- usage in the system under various workload-conditions.

This work is targeted for a testbed of UNIX workstations with the initial phase ported to

SUN workstations on the NASA, Ames Research Center Advanced Automation Testbed.

Keywords: performance measurement, data-analysis, real-time modeling, statistical clus-

tering, state-transition model.

L

L

m

m

W

El "

EE

EE

gm!

g_

g

m

E _

W _

iF
Z

j F

g _

i

w

ACKNOWLEDGEMENTS

i°°
II!

;.-.,

The authors would like to thank Wolfgang Halang (Univ. of Illinois), for helping

with the clustering algorithms, and Terry Grant (NASA, Ames) and Wei-Lun Kao (Univ.

of Illinois) for many useful discussions. They would also like to thank Gwan Choi (Univ.

of Illinois) and Roger Bartlett (NASA, Ames), for helping with the graphical interface

and Linda Lin (Univ. of Illinois) for proof-reading this report. This work was supported

in part by NASA grant NCA-2-301 and in part by NASA grant NAG-I-613.

w

I

!

imi

i t

u!

M i

I

W_
L_

i
m

I

I

E ,

w

Contents

1 Introduction 2

2 Overview of Modeling tool

3 Data Gathering

3

4 Model Construction 7

4.1 State TransitionProbabilities............................... I0

4.2 Waiting and Holding Times 10

5 Model Solving II

5.1 Occupancy Probability................................... Ii

5.2 Steady-Stateentry rate 12

5.3 Response-Time distribution................................ 12

6 Results 13

7 Conclusions 19

A Modeling Program 23

r_

B User Guide 36

B.1 Set-Up Procedure 36

B.2 Running Measure 36

i

g

m
i
J

Z
I

m

NiP

M .

g_

m
mm
W

g'

ml !

Q

!|m

=

U

m_

J

g

I

1 Introduction

=

r

= .

, The goal of this project is to develop an integrated data analysis and model extraction facility.

System activity data are collected and analyzed to extract suitable behavioral models of the system

under measurement. The development of resource usage models of this type is valuable for several

reasons. For example, it can generate performance measures for software developers. Near real-

time models can provide instantaneous feedback for system tuning and identification of performance

bottlenecks. Furthermore, the impact of abrupt changes on system performability and reliability

can be easily quantified.

Although many researchers have addressed the modeling issue and have significantly advanced

the state of the art, none have addressed the issue of how to identify the model structure. Further,

very few of either the hardware or the software models have been validated with real data. Excep-

tions are the joint hardware/software model discussed in [2] and a measurement based model of

workload dependent failures discussed in [3]. Both, however, describe only the external behavior of

the system and thus fail to provide insight into component-level behavior. Much of this project is

based on earlier work by M.C. Hsueh [1] in which real data are used to identify suitable models.

System-level activity data for this project was collected via software instrumentation of a net-

work of SUN workstations at the University of Illinois. Initially, statistical clustering is used to

identify high-density regions of resource-usage in a given environment. The identified regions form

the states for building a state-transition model to evaluate system and program performance in real-

time. The model is then solved to obtain useful parameters such as the response-time distribution

and the mean waiting time in each state. A graphical interface to display the key models and char-

acteristics (with real-time updates) has also been developed. The results provide an understanding
2

of the resource-usage in the system under variousworkload-conditions.

The followingsectiongivesan overview of the modeling tool.The data gatheringprocedure is

discussedin Section3. Section4 dealswith the data analysisand model construction.Section5

expl_ns the model-solutionprocedures. The resultsof experimental model-constructionin real-

time are presentedin Section6. The reportconcludeswith a discussionof the resultsin Section7.

Possibleextensionsto the ongoing researchare alsodiscussedin thissection. These extensions

include the incorporationintothe modeling facilityof a v_rietyof modeling techniques such as

tlme-seriesanalysis.The authors envisagethat thistoolwillprovidea spectrum of techniquesto

the user for modeling and predictionpurposes. The code for model constructionis containedin

Appendix A.

2 Overview of Modeling tool

A simplifiedblock diagram of the analysistool and graphics package MEASURE is shown in

Figure1. The arrowsindicatethe flowofdata through the system. The dottedlinesencloseintended

extensionsto the toolwhich willallowthe userto perform time-seriesanalysisand make predictions

in real-time.The data-gatheringmodule isthe interfacewith the system levelinstrumentation.

The granularityof the collectionisspecifiedin thismodule. The database created by the data-

gatheringmodule is used by the clusteringmodule to identifyhlgh-densitypatternsof resource

usage.A user-interfaceallowsthe userto specifythe number of clustersto be formed, the amount

ofdata to be analyzed and the parameters to be analyzed.The calculationsof centroidsand other

clusterparameters are alsoperformed here. The model-identificationmodule takes as input the

centroidsfrom the clusteringmodule and createsa state-transitiondiagram. In the model-solver

3

m

J

U

u

mr

W _

J

W

w

U

BLOCK DIAGRAM OF REAL-TIME MODELING TOOL

(MEASURE)

Computer-System to be modeled

Software instrumentation

tSystem usage data

_=

r .

Graphical

Display

(Updated

in real-time)

Response time

Distb.

Data-Gathering Module

-user-controlled granularity

-user-specified data-fields

Clustering Module

-Kmeans

-Wmeans

1
Model Identification

-transition prob.

-waiting time distb.

-Markov,Semi-Markov

Model

Solver

Model chars.

-resp. time

-occup. prob

-perf. char.

Time Series

Analysis

for

prediction

in real time.

-LPC

-ARIMA

Spectral

Analysis

Figure 1: Block Diagram of Modeling Tool
4

_/

,,,..¢

the constructed model is identified (Markov or Semi-Markov) and the state-transition diagram

is used to calculate the occupancy probability, the steady-state entry rate and the response-time

distribution. A graphical interface is used to display the latest state-transition model and response-

time distribution.

3 Data Gathering

Data for this study was collected via software instrumentation of a network of SUN workstations,

running SunOS Release 4.0, at the University of Illinois. The network consists of 4 file-servers and

50 diskless SUN workstations. Specifically one of the four file-servers on the network was measured.

The data on resource usage was collected using an operating system facility called vrastat, This

facility collects data on system usage, e.g. the system CPU, number of pageins, size of active virtual

memory, the context switch rate etc. by sampling the kernel data tables at periodic user-speclfied

intervals. A typical output from vrnstat is shown in Figure 1.

The actual statistics gathering is an integrated activity in the operating-system kernel i.e. it

is performed by several routines. One of these, the harrlclock_) routine collects statistics at each

clock cycle on the CPU mode (system, user or idle) in that cycle. A second, the pagin_) routine,

recalculates paging activity every time a paging request has to be satisfied. The kernel has three

types of data structures: rate, sum and cnt. Five-second averages of measured parameters (e.g,

CPU-user time percentage) are stored in data structures of the type rate. Free-running counters

(e.g. number of device interrupts) are stored in structures of the type sum and accumulations

over one second (e.g. number of context switches) are stored in structures of the type cnt. An

image of the kernel tables is available in a special file called kraern. Vmstat reads kraera at user-

5

m

W

m

m

J

J

g

Qr

j_

g_

mm

m

g

E--

w

procs
r b w
000

000

100
000

000
000
000

000
000

000
200
000
000
000

000
000

000

memory
avm fre re at

0 2808 0 0

0 2672 0 0
0 2616 0 0

0 2600 0 0
0 2600 0 6
0 2600 0 0

0 2600 0 0
0 2600 0 0
0 2600 0 0

0 2600 0 0
0 2600 0 6
0 2600 0 0
0 2600 0 0

0 2600 0 0
0 2600 0 0

0 2600 0 0
0 2600 0 8

page
pi po fr
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0

0 0 0

0 0 0

de sr dO dl d2 d3
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

faults cpu

in sy cs us sy id
4 144 37 63 7 30

16 41 ii 2 2 96

12 39 10 4 1 95
13 41 10 1 1 98

13 45 10 2 4 95
40 48 12 8 3 90
16 43 13 6 2 92

4 16 4 0 0100
0 8 1 0 0100
0 4 0 0 1 99
0 3 0 0 3 97

0 1 0 0 0100
0 1 0 0 0100

0 1 0 0 0100
0 1 0 0 0100

0 2 0 0 0100
0 2 1 0 3 97

E

J

Key:
r: Number of processes in the run queue
b: Number of processes blocked for resources
w: Runnable or short sleeper processes
avm: number of active virtual Kbytes
fre: size of the free list in Kbytes

re: number of page reclaims
at: number of attaches

pi: kilobytes per second paged in
po: kilobytes freed per second
de: anticipated short term memory shortfall in Kbytes
sr, d0,dl,d2,d3,d4: Disk operation sper second
faults:

in: (non clock) device interrupts per second

sy: system calls per second
cs: CPU context switch rate per second

CPU activity distribution in per cent:
us: user time

sy: system time
id: CPU idle time

Figure 2: Output from Vmstat

specified intervals and performs simple arithmetic to compute averages and convert from one scale

to another. Since vmstat uses some rate-type data, an interval specification of under five seconds

can cause erroneous values to be read.

4 Model Construction

The data-analysis facility developed in this project is intended to allow the user to choose the

measures to be analyzed. In the experiments conducted to date five parameters provided by vmstat

have been analyzed. These are:

1. Non-clock device interrupts.

2. System calls.

3. Context switches.

4. Percentage of CPU time (user).

5. Percentage of CPU time (idle).

Each parameter is treated as a dimension in n-dimensional space, with n=5 in this case. Thus

the data samples become five-dimensional vectors. In clustering nomenclature the axes of the space,

i.e. the parameters, are called attributes.

The analysis uses statistical clustering to separate the component data into similar classes

of resource usage. Similarities or distances are computed between pairs of data items and the

clustering algorithm defines rules according to which the data-items are clustered into groups on

the basis of inter-item distances or similarities.

A variety of clustering algorithms are being investigated for their suitability. Currently the

model-construction code uses a statistical clustering algorithm called K-means which is based on

7

M

i

j

m

u

an Euclidean distance measure [4]. The actual code is in Appendix A.

The algorithm partitions data-points into K clusters. K non-empty clusters C1, C2,..., Ck are

sought such that the sum of squares of the Euclidean distances of the cluster members from their

centroids is minimized i.e.

k

_ II z, - _ II2--., minimum
j=l i

where xi E Cj and _ is the centroid of cluster Cj. Starting from an arbitrary initial partition

every point is transferred experimentally from its cluster to every other cluster and the new sum-

of-squares of the Euclidean distances is computed. The point is allotted to that cluster for which

the sum-of-squares of the overall system is minimized. This process is repeated until there is no

decrease in the sum-of-squares. This implies that a local minimum of the sum-of-squares function

has been reached. It is important to note that this algorithm does not guarantee to find the global

minimum, since as soon as a local minimum is found no further decreases will occur. Different

initial partitions may lead to the discovery of different local minima. Therefore it is prudent to

run the program using several different initial partitions and to use the best local minimum thus

discovered. The clustering problem is not amenable to exhaustive search techniques for the global

minimum since the search-space can be very large. For example there are 106s possible different

partitions of 100 objects into 5 clusters.

Once the clusters are identified, the centroid of each cluster (represented by its Euclidean

coordinates in n-dimensional space) is defined as a system-state. A transition model is then

constructed based on these states. This model is used to evaluate important characteristics of the

system such as the state occupancy probabilities, the transition probabilities from one state to

another and the mean waiting time in each state.

8

A commonproblem that is often encountered in practical situations is that measured parameters

(attributes) are usually expressed in non-homogeneous units (e.g CPU usage as a percentage of total

time, paging activity in units per second). So as to analyze these parameters on an equal footing

a scale change must be performed. Otherwise fields which have large numerical values can mask

fields which have smaller values.

We can think of the measurements as constituting a data-matrix. If m measurements have

been made the matrix will have m rows and if each measurement has n parameters (attributes) the

matrix will have n columns. The measurements are scaled by attribute i.e. each attribute (column)

in the scaled data-matrix has a standard deviation of 1 and a mean of 0. That is, each field z,'k is

transformed to a scaled value yi_ such that

Yik "-
Xik -- Xl.

S

where _7. is the mean value of a particular column, m is the total number of observations and S is

the standard deviation of that column, estimated from the data and is given by

n XS = -
v -i

In practice outliers (e.g. top 1-2 percent of the data) are often excluded in calculating the

standard deviation [5]. In effect this prevents the outliers from dominating the other data values.

It is important to note that these outliers are not excluded from the clustering process.

The possibility of dispensing with scaling is currently being investigated. This would entail the

use of a clustering algorithm which is not susceptible to non-homogeneous data. One such algorithm

W-means [4] is being tested for suitability in a real-time environment. Initial experiments show

that the run-time of W-means is up to ten time, greater than the run-time of K-means.
9-

4.1 State Transition Probabilities

= :

w

= :

E

A state-transition model is constructed based on the defined system-states. This entails computing

the state-to-state transition probabilities, the mean waiting times and the mean holding times in

each state directly from the measured data and from the state definitions. For calculating the

state-transition probabilities we use the fact that the data are in time-ordered form and that each

data-point is assigned to one state exclusively. From the state-assignments we can calculate the

number of transitions from a state i to some specific state j. On dividing this by the total number

of transitions out of state i we obtain the transition probability Pij.

There are two notational conventions that can be used to assign transition probabilities to the

state diagram. The first convention assumes that transitions occur each time a measurement is

taken. If this convention is used, self-transition probabilities (i.e. the probability of transition

from some state to the same state) can exist. The second convention does not count self-transition

probabiIities. In this model construction the second convention is used. That is, the self-transition

probabilities Pii are defined to be equal to zero for every state i.

4.2 Waiting and Holding Times

Using this convention mean holding time _ for a pair of states i,j is the average time the process

spends in state i before it makes a transition to state j. The mean waiting time Y7 for a state i is

the average time the process spends in state i before it makes a transition to any other state. The

mean waiting times _ in each state and the mean holding times from each cluster i to each cluster

j, _-j, are also directly computable from the assignments.

10

5 Model Solving

Now that an appropriate model has been identified conventional solution techniques can be used

to solve the model and obtain the key model characteristics such as the steady-state occupancy

probability, the steady-state entry rate and the response-time distribution. Many people have

discussed these methods and we summarize some key results relevant to our model here.

5.1 Occupancy Probability

If the process has been operating unobserved for some time and if it is known that the process

is now making a transition, the probability that the transition is to state j is 7rj. If there are n

clusters each 7rj must satisfy a simultaneous equation of the form

1%

,_j= _ ,_,p,j (1)
i=l,i_j

(Note that under the convention used pii = 0 for all i.)

conjunction with the constraint

The above equation is used in

to obtain n linearequationsofthe form

•_= 1 (2)
i=1

1%

1= _ _(1 + p_) (3)
i=l

The unique solution for each ri is obtained by solving n equations of this form for each _ri. The

steady-state occupancy probability of each state is evaluated from

11

J

g

w

g

g

i
J

M

u

ID

I

I

U

I

B

= =

W

- =

J

(4)

where 't-= _--1 _ri'/'_. These values for the steady-state occupancy probabilities are compared

with the actual values and the relative and absolute error percentages are computed. Since data

is gathered at regular intervals the actual probabilities can be computed by dividing the number

of data-points assigned to each cluster by the total number of data-points. The absolute error

percentage is used to validate the use of a stochastic process (Markov or Semi-Markov) to model

the system. It is found that a Semi-Markov model is wen-suited to model the system. This is

borne out by the fact that the absolute error percentage of the computed occupancy probability, is

typically less than 2 percent for the examples considered.

5.2 Steady-State entry rate

Another important parameter which the model calculates is the steady-state entry rate. This is

the probability that the process is just entering state i at some time instant after the system has

attained steady state and is given by

_=

L

ei = 5/ (5)

5.3 Response-Time distribution

A detailed exposition of the general solution technique for Markov chains with absorbing states

may be found in Trivedi [7]. Key results relevant to our model are summarized here.

The response-time distribution of the system for a particular workload is obtained by creating

12

a dummystatei.e. if there are three clusters, there will be a total of four states. This dummy state

is designated to be an absorbing state. Once the process enters the absorbing state it is destined

to remain in that state. To obtain the response time distribution the model needs to provide the

solver with the transition rates Aij from every state i to every state j. Obviously there will be

no transitions and hence no transition rates away from the absorbing state. The transition rates

needed can be computed directly from the state assignments.

Let the state occupancy probability of state j at time t be denoted as Pj(t). Then _"_j Pj(t) = 1

for each t __ 0. For each i and j(j _ i) there is a non-negatlve continuous function qj(t) defined by

F_mh--,o(Plj(t, t + h)) / h. Also, qj(t) = limh--.o(1 - pjj(t, t + h)) / h. In the time-homogeneous situation

qlj(t) is independent of t. In the time-homogeneous case the equation

= __, Pi(t)qij - Pj(t)qj. (6)
dt

i#j

holds.

This equation may be used to obtain the distribution of the time taken to reach the absorbing

state. If i is the absorbing state and if Y is the time taken to reach the absorbing state, the

cumulative distribution function(CDF) of Y is Fy(t) = Pi(t). The equation must be solved for

every state in the system using Laplace transforms.

6 Results

This section illustrates the usage of MEASURE with an analysis of data from a SUN fileserver. A

static analysis of 512 data-points gathered at 5-second intervals, from a machine with a load-factor

of 18, is compared with two real-time analyses. In each case the data are split into three clusters.
13

g

m

N

g

H

m

m

g

g

r_

W

J

I

I

W_

W

I -

J

w

r .

L

In the first real-time analysis the data are contained in four 640-second size windows i.e. each

window contains 128 data-points. In the second case the data are contained in eight windows,

each of size 320 seconds (i.e. each window contains 64 points). Data in each window are analyzed

independently of data in other windows. No history of previous window-analysis is maintained.

The static-analysis state-transition diagram is shown in Figure 3 and the relevant output from

the program in Figure 5. A physical interpretation of this diagram is that the system is running

at a high degree of efficiency. The occupancy probability of the inefficient state is very low; the

transition probabilities to it are low and the transition probabilities away from it are high.

In the first real-time case an analysis of the third window detects a situation where the system

is on the verge of thrashing. There is a high probability of transition to an inefficient state, which

has a high occupancy probability. The program output is shown in Figure 6. This example had a

load-factor of 18. In such circumstances, there is usually no CPU idle-time.

This unusual resource-usage pattern is also detected in the second case, when the model from

the fifth window is analyzed. The state-transition diagram is shown in Figure 4. The effect of the

decrease in window size (as compared to the 128-point windows) is to highlight the pattern even

further.

There are several methods for the solution of these types of models [7],[10]. For solution purposes

we define an absorption state. The system is assumed to go into the absorption state from the exit

state. The response time is defined as the time required to transit from a given entry state to the

absorption state. Currently we have used a modeling tool called SHARPE [8] for solution purposes.

Our final aim is to incorporate the solution procedure into MEASURE. Figures 7 and 8 show the

calculation of response-time distributions for a specific benchmark program. The entry-probabilities

14

STATETRANSITIONDIAGRAM(512pointstaticanalysis)

STATE1
i

p[1][2] = 1.0

z

mm

I

STATE 0

P[O][2] = 1.0

p[2][o] = 0.75

P[2][1] = 0.25

STATE 2

I

i

J

State 0 is a high-usage efficient state

State I is an inefficient state

State 2 is high-usage with a higher system C"PU-percentage than State 0

State 0 1 2

Actual Occup. Prob. 0.562 0.033203 0.404297

Model Occup. Prob. 0.562 0.033203 0.404297

Figure 3: Transition Diagram for 512 points
15

mn

i

I

i

W_

I

i :

m
J

STATE TRANSITION DIAGRAM(Dynamic Analysis: 64 point windows)

= -

STATE 0

P[0][1] = 0.5

P[0][2] = 0.5

P[2][01 = 1.0

STATE I

P[I][0I -- 1.0

STATE 2

State 0: High-usage efficient state

State 1: System on verge of thrashing

State 2: High-usage state, higher system CPU-time percentage than State 0.

State

Actual Occup. Prob.

Model Occup. Prob.

I

0.734375

0.688645

0.218750

0.256410

2

0.046875

0.054945

Figure 4: Transition Diaglr_m for a 64 point window

i

CLUSTER CENTROIDS

Cluster 0 : number of points - 288

dev.intr sys.calls swtchrate

per sec. per sec. per sec
11.052 4.645 18.711

cpu/usr
(%)

97.836

Cluster 1 : number of points - 17

dev.intr sys.calls swtchrate

per sec. per sec. per sec.
80.058 49.235 273.529

cpu/usr
(%)

66.470

Cluster 2 : number of points - 207

dev.intr sys.calls swtchrate

per sec. per sec. per sec.
45.144 56.487 43.396

cpu/usr

(%)
88.584

MODEL CHARACTERISTICS:

Eli] is the steady-state entry rate into state i

TAU[i] is the mean waiting time in state i

PHI[i] is the occupancy probability in state i

E[0]: 0.004

TAU[0] : 120.000

Actual PHI[0] : 0.562

Model PHI[0] : 0.562

Absolute Error: 0.000 percent

Relative Error: 0.000 percent

Z[l]: 0.001
TAU[I] : 21.250

Actual PHI[l] : 0.033

Model PHI[I] : 0.033

Absolute Error: 0.000 percent

Relative Error: 0.000 percent

E[2]: 0.006

TAU[2] : 64.687

Actual PHI[2] : 0.404

Model PHI[2] : 0.404

Absolute Error: 0.000 percent

Relative Error: 0.000 percent

cpu/idle

(%)
0.000

cpu/idle
(%)

0.470

cpu/idle

(%)
O.0O4

Figure5: Program Output for512 points
17

I

m

l

l

U

z
j_

l_m B

I

I °

g

w

CLUSTER CENTROIDS

Cluster 0 : number of points = 46

dev.intr sys.calls swtchrate

per sec. per sec. per sec.
18.869 9.717 18.413

Cluster 1 : number of points - 16

dev.intr sys.calls swtchrate

per sec. per sec. per sec.
73.250 49.000 282.187

Cluster 2 : number of points - 66

dev.intr sys.calls swtchrate

per sec. per sec. per sec.
42.196 64.969 39.772

cpu/usr

(%)

97.108

cpu/usr
(%)

68.187

cpu/usr

(%)

90.090

cpu/idle

(%)

0.000

cpu/idle

(%)
0.500

cpu/idle
(%)

0.000

w

w

MODEL CHARACTERISTICS:

Eli] is the steady-state entry rate into state i

TAU[i] is the mean waiting time in state i

PHI[i] is the occupancy probability in state i

E[0]: 0.008
TAU[0] : 38.333

Actual PHI[0] : 0.359

Model PHIl0] : 0.344

Absolute Error: 1.463percent

Relative Error: 4.071percent

E[I] : 0.005

TAU[I] : 26.666

Actual PHI[l] : 0.125

Model PHI[l] : 0.135

Absolute Error: -l.089percent

Relative Error: -8.718percent

E[2] : 0.0125

TAU[2] : 41.250

Actual PHI[2] : 0.515

Model PHIl2] : 0.519

Absolute Error: -0.373percent

Relative Error: -0.724percent

Figure 6: Program Output fora 128 point window
18

into the states are shown in Figure 7 and the actual distribution is shown in Figure 8. The mean

of the cumulative distribution function (CDF) of the response time is the average-response time of

the system for the workload which is represented by the data-points.

From Figure 5 and Figure 6 it can be seen that the state-transition diagram is heavily dependent

on the size of the window used to analyze the data. Figure 6 highlights the importance of the low-

efficiency state by assigning higher transition probabilities to it. Since the window size is smaller

this state is also assigned a higher occupancy probability. Therefore we can see that smaller

windows can be used to detect unusual behavior patterns as they occur. However, as the window-

size is decreased, the values of occupancy-probability calculated by the model become increasingly

erroneous. This limits the smallest window-size achievable.

The response-time probability distribution function shown in Figure 4 is a new feature which

supplies the user with a quantitative measure of system performance. The response-time infor-

mation can help the user to predict the amount of time required for a job to complete in a given

environment,

w

W

I

i

m

m

==

[]

m

W_

[]

M i

m
R ,"

7 Conclusions

This report describes the first phase of the development of MEASURE, an integrated data analysis

and model identification facility. The facility takes system activity data as input and produces as

output representative behavioral models of the system in near real-time. It also enables the mea-

surement of a wide range of statistical characteristics on the system. Initially, statistical clustering is

used to identify high-density regions of resource-usage in a given environment. The identified regions

form the states for building a state-transition model to evaluate system and program performance

19

=--
I

s

m

i

I

L

=

w

markov compsys /*Specification of system to be solved*/
0 1 mu /*mu is the transition rate from state 0 to state i*/

0 2 nu

0 3 au

10gu
I 2 ru

i 3 bu

2 0 cu

2 I fu

2 3 hu

end

0 0.9 /*The probability that the system starts up from state 0*/

1 0.i /*is 0.9 and the probability that it starts from state I*/
end /*is 0.I*/

bind

mu 2/45 /*The value of mu is 2/45*/

nu 1/15
au 0

gu 3/70
ru 2/70

bu 0

CU 2/70

fu 3/35

hu 1/35
end

cdf (compsys)
end

CDF for system compsys:

1.0000e+00 t(

+ -i.0129e+00 t(

+ 1.2893e-02 t(

+ -3.1851e-01 t(

0) exp(0.0000e+00 t)

0) exp(-6.7290e-03 t)

0) exp(-l.5933e-01 t) cos 1.4949e-02t

0) exp(-1.5933e-01 t) sin 1.4949e-02t

mean: 1.5063e+02

variance: 2.2053e+04

L

Figure 7: Typical SHARPE input and Output
2O

lib

Prob. of completion 0.5

Cumulative distribution function of response time

i

I
I
I
I
I
I

-y _ _ _--

I I I I
I I I I
I I I I
I I I I
I i I
I I I

I
I
!
!
i
!

i
I

ol_o_a_mi
I I
I
l

I
I I
I I
I I

.... F T---

I
I
I
I
I
I

I
I
I
I
I
I

_J J ,L. L J.

.... 1"..... "f"
I I
I I
I I
I
I
I
1"- "'1

I
I
I
I

I I
I I

0.0
0 _00 2o0 3oo _ 5oo 600 700

Time in seconds

(The function starts from 14% - the minimum job requirement time)

Figure 8: CDF of response time
21

l

II

U

!
m

t

m
g

mi
g

II

z

I

!
U

a

!
ig

!

J

i

m

R
m

w

in real-time. The model is then solved to obtain important parameters such as the response-time

distribution and the mean waiting time in each state. The results provide an understanding of the

resource-usage in the system under different workloads.

Extensions to the ongoing research include the incorporation of error data into the model and

the integration of a model-solving module into the model-construction code. The possibility of

using estimation techniques such as Kalman filtering to predict the behavior of the system will also

be explored.

w

22

Appendix A Modeling Program

The routines freevec.c, lubksb.c,ludcmp.c, vector.c and nrerror.c are taken from Press [6]. The

routines freevec.c, vector.c and nrerror.c axe general utility routines. The routine ludcmp.c carries

out the L U decomposition of a square matrix. The routine lubksb.c is an equation solver which

uses the results of ludcmp.c.

#

echo "Welcome "co MEASURE"

unalias rm

echo -n "Do you want the graph option? (¥ or N) "

set q = $<

rm prob >_ /dev/null

rm cidle >& /dev/null

echo " "

echo -n "What is the name of your data-file? "

set y = $<
cp ey rlmdata
echo " "

echo -n " In which file do you want the results stored? "

set x = $<

echo " "

echo -n "How many parameters are to be analyzed?: "

set z = $<

rm trar >& /dev/null

echo " " >> trar

echo " CLUSTER CENTROIDS" >> trar

echo -n " " >> trar

em=$z
while ($m != O)

echo -n "Input the first column of the parameter and the field width: "
set a = $<

echo -n '*Input the parameter name: "

set fav= $<

prh Slav >> trar

set names = ($a)

@ b = Shames[l] - I

@ c = Shames[2] + I

set tf = tmpem

colrm I eb < rundata [colrm $c > etf

@m=$m-%
end

echo " " >> trar

echo -n "How many points are to be analyzed?: "

set ch = $<

echo -n "Enter display-time in seconds: "

set rip = $<
dum $ch ez

@ ch = $ch + 1

cat temporary main.c > newmain.c
23

m

I

g [

D

m

m

I

w

J

U

r _

I

g

Z

cat temporary proc.c > newproc.c

cat temporary kmeans.c > nkmeans.c
make >_ /dev/null

wo:

clus> Sx

cat trar Sx > tim

si:

grep -v PRO < tim > /dev/_yp2

if ($q == Y) then

graph Srip

else sleep Srip

endif

cat blank > /dev/ttyp2

echo -n "Redisplay? (Y or N) "

set bull = $<

if ($bull == Y) then

goZo si

endif

rmprob >_ /dev/null

rm cidle >_ /dev/null

echo -n "Continue with same settings? (Y or N) "

set fa = $<

if ($fa == Y) then

@m=$z

.hile ($m != O)

set tf = tmpSm

tail +$ch Stf > tsm

cp tem Stf

@m=$m-1

end

goto wo

endif

rm trar

24

#include <stdio. h>

#include <malloc. h>

#define MAXLINE 100

main (argc. argv)

int arEc;

char *argv [] ;

(

int dim.i.j.k.q;

char r [20] [MAXLINE] ;

FILE *fopen() .*ifp;

dim = atoi(argv[l]) ;

printf("dim is _d\n".dim) ;

printf("Enter the parameter names (upto 20 different parameters) in the ");

printf("order in ,hich they appear in the data file\n\n");

printf("Parameter names should be separated by blanks or carriaEe-returns\n");

for(i=i; i <=dim ; i++) {

scanf ("_s".r [i-I]) ;

}

printf("How many points do you ,ant to analyze?\n");

scanf C"Xd", _j) ;
printf("How man}, clusters do you want?\n");

scanf ("7,d", kk) ;

printf("What is the time Eranularity in seconds?\n");

scanf ("Xd", kq) ;
ifp -- fopen("temporary","w") ;

fprintf (ifp."# define DIM _.d\n". dim) ;

fprintf (if p. "# def ine NPTS Y.d\n". j) ;

fprintf (ifp."# define CLUS _.d\n".k) ;

fprintf (ifp. "# define TIME _\n". q) |

fclose(ifp) ;

>

l

1

1

1

1

D

1

R
1

I

1

U

z

25
W

1

U

/* This program clusters input-data into a pre-determined number */

/* of clusters. Cluster information is then used to construct a */

/* semi-Markov model of the system. */

#include <stdio. h>

int p [_PTS], q [i 2] ;

float x [NPTS] [DIM], y [NPTS] [DIM3, s [CLUS] [DIM], sas [CLUS] [DIM], e [CLUS + I] ;

/*The array s holds the centroid values.

main ()

<

FILE *fopen(), *ip_l, *pr_file, *ip_2, *ip_3,*ip_4, *ip_5;

/*Data is generated by running the vmstat system command. This version */

/*of the program analyses 5 parameters provided by vmstat. These are */

/'I.) in - (non-clock)device interrupts per second. */

/*2.) sy - system calls per second. */

/'3.) cs - CpU context s,itch rate (s,itches/sec) */

/*4.) us - user time for normal and low priority processes. (Y. usage) */

/*S.) id - cpu idle time (_). */

/*From 4.) and 5.) the cpu usage for system activities can also be */

/*calculated. ./

extern float x[] [DIM] ;

int i,il ,i2,i3,i4,i5,n;

ip_l - fopen ("tmp1" . "r"); /*The ra, data is processed by*/

�*the executable file runs*. It extracts the fields to be analyzed. */

/*The executable code for this program is called from runs*. */

if (ip_l == NULL)

printf ("***tmpl could not be opened. \n") ;

for (i =I; i < (NPTS + I); ++i)

{

fscanf(ip_1, " 7,d \n", kil);

x[i-i][0] = il;
}

fclose (ip_1);

Ip_2 = fopen ("trap3" , "r");

if (ip_2 == NULL)

printf ("***imp3 could not be opened.\n");

for (i =I; i < (NPTS + I); ++i)

{

fscanf(ip_2, " Y.d \n", ki2);

x[i-1][1] = i2;
}

fclose (ip_2);

ip_3 = fopen ("trapS" , "r");

if (ip_s == NULL)

printf ("***traps could not be opened.\n");

for (i =I; i < (NPTS + I); ++i)

{

fscanf(ip_3, " _d \n", ki3);

x[i-1] [2] : i3;
}

fclose (ip_3);
26

,/

=

ip_4 = fopen ("trap7" , "r");

if (ip_4 == NULL)

printf ("*_tmp7 could not be opened. \n") ;

for (i =I; i < (NPTS + I); ++i)

{

fscanf(ip_4, " _.d \n", &i4);

x[i-1] [3] = i4;

}

fciose (ip_4) ;

ip_5 = fopen ("trap8" , "r");

i_ (ip_s -= NULL)

printf ("***imp8 could not be opened.\n");
for (i =I; i < (NPTS + 1); ++i)
{

fscan_(ip_5, " 7.d \n". &iS);
x[i-1] [4] = i5;

Iclose (ip_S) ;

transf (NPTS) ;

pro c(CLUS, NPT$) ;

U

g

D_

M

a

i

n

Q

27

g

U

#define DIM 5

#include <math. h>

transf (m)

int m;

{

float t,u,v,q,s;

int i,k;

extern float x[][DIM];

extern float y[] [DIM];

for(k=O; k < DIM; ++k) {

t = 0.0;

u = 0.0;

for(i=O; i < m; ++i) {

v = x[i][k];

t =t +v;

U = 11 + v_v;

}

q = t/m;

s=O;

if((u - t,q) > 0.0)

s = sqrt((= - 1.0)/(u - t,q));

for(i =0; i < m; ++i)

y[i] [k] = s*Cx[i] [k] - q);

}

return;

28

#include <malloc.h>

#include <stdio.h>

#define DIM 8

#define CLUS 3

#define NPTS 500

proc(n.m)

int n,m;

{

FILE *fopen(), *pr_file, *iy_file,*ip;

int i.k,j,jim,jaw,lst,nz,nn,log,cam,indx[12] ,last_st,fst_st,fndx[12] ,¢h,wu;

float phi [CLUS + I], pro [CLUS] [CLUS], t_ [NPTS], de, toll, g. h;

float a[19][38].pi[19],sk[19],tau[CLU$ + I],ct[CLUS + l],d,f,b[19],**aa;

float _epr,dummy,tht_sr[CLUS +1] [CLUS +1] ,mcau;

float mph[CLUS + I];

extern in_ p[], q[];

ex_ern float x[][DIM],s[][DIM],sas[][DIM],e[];

k = O;

cam = 1;

for (i= 1; i<(m +1); ++i)

{

tw[i-1] = 5.0.i;

dw = 5.0;

++k ;

if (k > (NPTS/CLUS)) {

k = O;

++cam;

}
p[i-l] = cam;

}

kmeans(BPTS,CLUS);

ip = fopen("tme"."a");

for(i = O; i < m; ++i) {

fprintf(ip,"_f\n",(float)p[i]);

}

fclose(ip);

IIZ =_;

for (i=0; i < nz; ++i)

{ tau[i] = 0.0;

ct[i] = 0.0;

phi [i] =0.0;

mph[i] = 0.0;

printf(" CENTROIDS \n ");

printf("dev.intr sys.calls swtchrate ¢pu/usr cpu/idle \n \n");

for (j=O; j <.z ; ++j){

pro[i] [j] = O;
}
for (j =0; j < DIN; ++j)

printf(" Xf ", sas[i][j]);
prin_f(" \n");

29

I

m

m

m

B

m

I

m

w

m

i

m

g

m

m

J

I

jaw = IF

toll= twEjaw - 11;

Ist = p[jaw- I];
toll= toff- dw;

while(jaw < m) {

i = ja. + I;

phi[lst-ll = phi[lst-1] + dw;

k = p[i - 13;
tau[Ist -11 = tau[lst -1] + dw;

if(k != Ist) {

pro[lst-1]Ek-1] = pro[lst-11[k-1] + I;

ct[Ist-11 += 1.0;

}

Ist =k;

jaw =i;

}

k = p[m-1];
tau[k-11 += dw;

ctEk-11 += 1.0;
phi[k-ll = phiEk-1] + dw;

h = tw[m-1] - toll;

if(h <= O) h= -1;

for(i=O; i < nz; ++i)

phiEil = phiEi]/h;

nn =_Z+ 1;

for(i=O; i < nz; ++i) {

toff= 0.0;

for(j=O; j < nz; ++j)

toff = toff + pro[i][jl;

g = g + toll;

if(toll == 0.0)

toff= 1.0;

for(j=O; j < nz; ++j){

pro[it[j] = pro[i][j]/toff;
printf(" PROEY, d] [_,dl: _,f \n", i,j,pro[i] [j]);

}

}
for(i =1; i <= nz; ++i)

{

for(j = 1; j <= nz; ++j) {

a[il [j] = pro[j-t1 [i-1] ;

if(i != j) aEi]Ejl = aEi]Ej] + 1.0;

}

}

aa =(float **) malloc((unsigned) 12*sizeof(float*));

for(i = I; i <= CLUS; i++)

{ aaEil = a[i];

bEi]= 1.0;}

ludcmp(aa,CLUS,indx,kd);
30

lubksb (aa, n, indx ,b) ;

for(i=1; i<=CLUS; ++i)

printf(" PIE_.d] : 7.f \n",i-l, bill);

for(i=O; i < nz; ++i) {

tau[i] = tau[i]/ct[i];

}

mtau = 0.0;

for(i=O; i < nz; ++i) {

mtau += b[i+1]*tau[i] ;

}

for(i=O; i<nz; ++i) {

mphEi] = (bEi +I] *tauEi])/mtau;

e[i] -- (b[i +1])/mtau;

printf (" E [7.d]: 7d \n", i, • [i]) ;

printf(" TAU[_d] : _f \n". i. tau[i]);

printl(" Actual PHI[7.d]: 7.f \n". i, phi[i]);

printf(" Model PHI[_/.d]: _f \n". i, mph[i]);

for(j=O; j<nz; ++j) {

printf(" PRO[7.d] ET.d]: 7.f \n". i.j .proEi] [j]);
}

>

return;

J

u

i

m

g

m

w

g

z :

m

I

m_

m

J

31
m

m

U
=

w

T

/*The function kmeans actually clusters the given data. */

/*It identifies the cluster to which an individual point */

/*belongs. The algorithmuses the "Sum-of-Squared-Distance*/

/*criterion. It seeks to minimize the sum of the squares */

/*of the distances between members of clusters and their */

/*centroids. The function computes the final values of the*/

/*centroids and the sums of squares of distances for the */

/*individual clusters. */

/*kmeans is called from the function proc. */

#include <stdio.h>

#define DIM 5

kmeans(m,n) /*m denotes the number of points to be clustered.*/

/*n denotes the number of clusters. */

int m,n;

int r,u,v,w,i,it,j ,k;

extern float x[][DIM],s[][DIM],sas[][DIM]°e[];

extern float y[] [DIM] ;

extern int p[], q[];

float f,t,h,a,b,d,g;

for(j=O; j < n; ++j)

q[j] = o;
e[j] - o;

for(k=0;k < DIM; ++k)

s[j][k]=O;
}

for(i=O;i<m; ++i) {

r = p[i];

if(r<l IIr >n)

return;

q[r-l] = q[r-1] + 1;

for(k=O;k < DIM; ++k)

sir-l] [k]=s[r-1] [k] + y[i] [k3 ;
}

for(j=O;j<n; ++j) {

r - q[j];

if(r == O)

return;

f =1.0/(float)r ;

for(k=O;k < DIM; ++k)

s[j][k] = s[j][k]*f;
}

for(i=O ;i<m; ++i){

r =p[i];

f =0.0;

for(k=O;k<DIM; ++k) {

t = s[r-l][k] - y[i][k];

f = f + t't;
32

i =0;

}
e[r-1] = e[r-1] +f;

}
d = 0.0;

for(j=O; j<n; ++j)
d = d + e[j];

it=O ;

while(i_ < m) {

i=i+l;

i_ (i>m)

i = i-m;

r = p[i-l];

u = q[r-l] ;

if (u <= I)

continue;

h = (float)u;

h = h/(h-l.O);

f =0.0;

for(k=O;k<DIM; ++k) {

= sir-l] [k]-y[i-1] [k] ;

f ,, f +1;,1;;

}
a = h*f;

b = 1.0e20;

j=O;
while(j<n) {

j=j+l;
if(j==r)

continue;

u - q[j-1] ;

h ,, (float)u;

h = h/(h +1.0);

f = 0.0;

for(k=O;k<DIM; ++k)

{

t = s[j-1] [k] -y[i-1] [k] ;

f = f +t*1:;
}

f = h'f;

i:_(_ > b)

continue;

b =f;

v =j;

W =U;

}
if (b > a) {

++it ;

}

else {
33

W

W

D

I

m

Q

l

l

g

g

g

U

I

D

==

m

r_

m

it =0 ;

e[r-1] = e[r-1] - a;

ely-l] = e[v-1] + b;

d=d-a+b;

h = (floaZ)q[r-1] ;

8 = (float)w;

a = 1.o/(h- 1.o);

b = 1.o/(g +l.o);
for(k =0; k < DIM; ++k)

= yEi-i][k];
sir-l] [k] : (h*s[r-l] [k] - f)*a;

s[v-1][k] = (g,s[v-1][k] + _)*b;

}

p[i-l] = v;

q[r-1] = qEr-1] -I;

q[v-1] = q[v-1] +I;

}

}
for(i :0; i< n; ++i)

printf("q[_,d] is _d\n",i,q[i]) ;

for(i=O;i<m; ++i) {

r = pill;

if(r<l I It >n)
re_urn;

for(k=O;k < DIM; ++k)

sas[r-1][k]--sas[r-1][k] + x[i][k];

}

for(j=O;j<n; ++j) {

r = q[j] ;

ifCr == O)

return;

f :I .O/(float)r;

for(k=O;k < DIM; ++k)

sas[j][k] : sas[j][k]_f;

}

return;

w.._-

34

#include <stdio.h>

#include <malloc.h>

void free_vector(v,nl,nh)

float *v;

int nl,nh;

free((char*)(v +nl));

}

#include <malloc.h>

#include <stdio.h>

void D/error(error_text)

char error_text[I;

void exit();

fprintf(stderr,"_s\n",error_text);

exit(l);

}

#include <malloc.h>

#include <stdio.h>

float *vector(nl,nh)

int nl,nh;

{ float *v;

v =(float *)malloc((unsiEned) (nh -nl+1)*sizeof(float));

if (!v) nrerror("allocation failure");

return (v-nl);

}

m

m

m

i

U

m

g

g

g

m

g

m

I

m_

=

l

J

35
W

g

Appendix B User Guide

The data-analysis facility MEASURE is intended to run on acolor SUN 3/110 or similar machine.

It takes as input a file containing system activity measurements such as the CPU usage, the number

of context switches per second, the device interrupts per second etc. The file must not contain any

non-numerical text. The output consists of a state transition model for the measured system and

various system performance parameters obtained by solving the model. Statistical cluster analysis

is used to generate the states for building the state-transition model. The state-transition model

can be displayed graphically, utilizing a package written in SUN CGI.

Appendix B.1 Set-Up Procedure

The MEASURE tape contains a file '.sunview' and a directory 'demo'. Copy the sunview file

into the user's home directory. After copying in the 'demo' directory, type 'suntools -i' from the

home directory and wait for the windows to to be displayed. In each of the windows 'cd' to the

demo directory. In the rightmost window type 'tty'. The system will respond with '/dev/ttyp2' or

'/dev/ttyp3'. One of the files provided in the directory 'demo' is a shell-script called 'sts'. Search

for the string 'ttyp' in 'sts' and change the ttyp number to match the tty number in the rightmost

window. There are two occurrences of the string; both must be changed. This completes the

setup procedure. Prior to running MEASURE, transfer all the data-files to be analyzed to the

directory 'demo'. Note that you must 'cd' to the directory 'demo' in all 3 windows before running
MEASURE.

Appendix B.2 Running Measure

To start up MEASURE type 'nekey' in the leftmost window. This provides a color key for the

graphical display If there is an object code incompatibility the file 'nekey.c' can be recompiled into

'nekey' using the command

cc -o nekey nekey.c -lcgi -lsunwindow -lpixrect -lm

Currently the key assumes that 5 parameters are being analyzed and that the 5th parameter

is the percentage of time that the CPU is idle. To start running MEASURE type in 'sts' in the

middle window and hit the carriage-return.

Two sample data files are provided with this tape. The first, 'strip', contains 512 measurements

and the second ,'bigdata', contains 3952 measurements. Both were created using the system com-

mand 'vmstat' with a measurement interval of 5 seconds. For the data-set 'strip' Figure 9 shows a

typical terminal interaction together with the user responses. To start with MEASURE prompts

the user to choose between a graphical-textual display and a purely textual display. Type only Y
or N (not y or n) in response to the query. Currently the display assumes that 5 clusters are to be

constructed. Next the user will be prompted for the name of the data-file. Type the name (in this

case strip) and hit the carriage-return. The tool makes its own internai copies of any user-supplied
data-file. The user's copy of the data-file is not altered in any way. Next, the name of the file into

which numerical results are directed is entered by the user (in this case the file is 'hode'). The user

will then be prompted for the number of parameters to be analyzed (enter integers only). The next
prompt will be to input the starting column of each parameter and its associated field width. For

36

I

W

g

m

m

Welcome to MEASURE

Do you want the graph option? (Y or N) N

What is the name of your data-file? strip

In which file do you want the results stored? hode

How many parameters are to be analysed?: 5

Input the first column of the parameter and the field width: 58 4

Input the parameter name: dev

Input the first column of the parameter and the field width: 62 4

Input the parameter name: int

Input the first column of the parameter and the field width: 66 4

Input the parameter name: cs

Input the first column of the parameter and the field width: 70 3

Input the parameter name: sys

Input the £irst column of the parameter and the field width: 76 3

Input the parameter name: use

How many points are to be analysed?: 100

Enter display-time in seconds: 20

No of points is 100

How many clusters do you want?

5

What is the time granularity in seconds?

5

g,

I

g

I

g

==_

_m

D

H

i

m
g

Figure 9: Typical MEASURE run
37

_= =

m

g

example if a parameter begins in column 42 and has a width of 3, type 42 3 and hit the carriage-
return. Then enter the name of the parameter. The parameters can be entered in any order. The

interface will then prompt the user for the number of points to be analyzed. The display-time

in seconds is entered next; this parameter governs the time for which the results (graphical and

numerical) are displayed. The user must also specify the number of clusters to be identified and the

time-interval between measurements in the user-supplied data-file (the 'time-granularity'). In the

example, 100 measurements separated by 5 second intervals are analyzed for each run i.e., a new

model is created and solved every 500 seconds. After displaying the analysis results, the interface

will prompt the user to choose between redisplaying the results or carrying out a new analysis. If

the next analysis is to be carried out with the same settings for all parameters, the user can select

the 'Y" option when prompted by "Continue with same settings? "

E .

38

References

[1] Hsueh, M.C., Measurement-Based Models, Ph.D. thesis, University of Illinois at Urbana-

Champaign, 1987.

[2] CastUlo, X., A Comparable Hardware/So_ware Reliability Prediction Model, Ph.D. thesis,

Carnegie-Mellon University, 1981.

[3] Iyer, R.K., Rossetti, D.J., and Hsueh, M.C., "Measurement and Modeling of Computer Relia-
bility as Affected by System Activity," ACM Transactions on Computer Systems, vol. 4. no.3,

pp. 214-237, August, 1986.

[4] Spath, IIelmuth, Cluster analysis algorithms, Ellis IIorwood, 1980.

[5] Artis, II.P., "Workload Characterization Using SAS PROC FASTCLUS," Workload Charac-

terization of Computer Systems and Computer Networks, North-Itolland,1986.

[6] Press, W.ii. et. al., Numerical Recipes in C, Cambridge University Press, 1988.

[7] Trivedi, K.S., Probability and Statistics with Reliability, Queuing, and Computer Science Ap-

plications, Prentice-ttall,1982.

[8] R.A. Sahner and K.S. Trivedi. SHARPE Introduction and Guide for Users, Dept. of Computer

Science, Duke University, 1986.

[9] S. J. Leffler et. al. The Design and Implementation of the _.3BSD UNIX Operating System,
Addison-Wesley, 1989.

[10] R.A. Howard, Dynamic Probabilistic Systems Vols 1. and 2, 1971.

_=

iI

g

m
g

g

i

u

g

I

g

= =

I

m

O _

m
g

39
m
g

l

w

II

REPORT DOCUMENTATION PAGE OMaNo.OTO._.OSU

ta. REPORT SECURITY CLASSIFICATION

Unclassified

2,. SECURITY CLASSIFICATION AU'THORITY

ml

2b. DECLASSIFiCATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMeER(S)

UILU-ENG-90-2207

6a. NAME OF PERFORMI'NG ORGANIZATION

Coordinated Science Lab

University of IZll.nols

ADDRESS (C/ty, St,Ire, _ ZIPCodl)

ii01 W. Springfield Ave.

Urbana, IL 61801

CSG-121

6b. OFFICE SYMBOL
(If app41clb/e)

N/A

lb. RESTRICTIVE MARKINGS

None

3. DISI_RIBUTION/AVAJLABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

NAME OF FUNDING / SPONSORING 6b. OFFICE SYMBOL
ORGANIZATION (If applilabieJ

NASA

k ADDRESS (C/ly, State, and ZIPCOde)

NASA Ames Res. Ctr. NASA Langley Res. Ctr

Moffett Field, CA Hampton, VA 23665

9_n%fi
11. TITLE (Include $ecurdy CT_m'ficationJ

MEASURE: An Integrated Data-Analysis and Model-Identification Facility

NASA

7b. ADDRESS(City,$M_,andZIPCode)

NASA Ames Research Ctr. NASA Langley Rs.C.

Moffett Field, CA 94035 Hampton, VA 23665

9. PROCUREMENTINSTRUMENTIDENTIFICATION NUMBER

NASA NCA 2-301 NASA NAG 1-513

10. SOURCE OF FUNDING NUMBERS
i i

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. A,CCESSION NO.

t2. PERSONAL AUTHOR{S)

Jaidip Singh and Ravi K. lyer

13a. TYPE OF REPORT 13b. TIME COVERED
Technical FROM

16. SUPPLEMENTARY NOTATION

TO

ii

14. DATE OF REPORT (Ye,t, Momfi, D_yJ 15. PAGE COUNT

1990 March 38
| I

17. COSATICODES 16. SUOJECT TERMS(Co_Unutonreveneifneceaa_ and/dentffybyb/ocknum_d

FIELD GROUP SUBGROUP performance measurement, data-analysis, real-tlme modeling,

statistical clustering, state-transition model

i

19. AeSTRACT(Con_nueonmv,_eifneceu, m_ _nd/den_by_knumbed

This report describes the first phase of the development of MEASURE, an integrated data

analysis and model identification facility. The facility takes system activity data as input

and produces as output representative behavioral models of the system in near real-time. In

addition, a wide range of statistical characteristics of the measured system are also availa-

ble. The usage of the system is illustrated on data collected via software instrumentation

of a network of SUN workstations at the University of Illinois. Initially, statistical

clustering is used to identify high-density regions of resource-usage in a given environment.

The identified regions form the states for building a state-transition model to evaluate

system and program performance in real-time. The model is then solved to obtain useful para-

meters such as the response-time distribution and the mean waiting time in each state. A

graphical interface which displayes the identified models and their characteristics (with

real-time updates) has also been developed. The results provide an understanding of the

resource-usage in the system under various workload conditions. This work is targeted for a

testbed of UNIX workstations with the initial _hase _orted to SUN workstations on the NANA.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURIW CLASSIFICATION

r-"_UNCLASSIFIED_NLIMITED [] SAME AS RPT. [] DTIC USERS Unclassified

Z2a. NAME OF RESPONSIBLE INDIVIDUAL ' 22b. TELEPHONE (Include Area Code) 22_ OFFICE SYMBOL

DD Form 1473, JUN 86 Previous e_tions are obsolete. SECURITY CLASSIFICATION OF THIS PAG_

UNCLASSIFIED

19. Abstract, continued

Ames Research Center Advanced Automation Testbed.

R

==_

|

i

m

w

g

J

-z
I

i

m

m

D

I 1

I

I

l

g

